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Abstract

The effective (geometric mean) return of a periodically rebalanced
portfolio always exceeds the weighted sum of the component geomet-
ric means. Some approximate formulae for estimating this effective
return are derived and tested. One special case of these formulae is
shown to be particularly simple, and is used to provide easily com-
puted estimates of the benefits of diversification and rebalancing. The
results are also used to show how classical Mean-Variance Optimiza-
tion may be modified to generate the Geometric Mean Frontier, the
analog of the efficient frontier when the geometric mean is used as the
measure of portfolio return.
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1 Introduction

The calculation of the true long term, or effective, return is an often ignored
part of the portfolio optimization process. The case of U.S. common stocks
and long term corporate bonds in Table 1 provides a well known example.
Here the arithmetic mean return is simply the average of the 69 yearly re-
turns, while the geometric mean return is the effective, or annualized, return
over the entire period.

Let us consider an annually rebalanced portfolio consisting of equal parts of
stocks and corporate bonds. Using a simple 50/50 average of the individual
returns one obtains an anticipated portfolio return of 9.00 percent using the
arithmetic mean returns and 7.85 percent using the geometric mean returns.
In fact, neither is correct: A 50/50 portfolio, rebalanced annually, has an
annualized return of 8.34 percent. To complicate matters further, if one had
purchased the 50/50 mix on January 1, 1926 and not rebalanced, then by
December 31, 1994 an almost 100 percent stock portfolio would have resulted,
with an annualized return of 9.17 percent.

MacBeth (1995) recognized that the uncritical use of a weighted geometric
mean results in an anticipated portfolio return which is too low, and sug-
gested instead a formulation using the arithmetic mean corrected for vari-
ance. For the above example, this gives a return of 8.30 percent, very close
to the actual rebalanced return of 8.34 percent.

The question of whether or not rebalancing benefits portfolio return is more
complex. Perold and Sharpe (1995) examined the problem from the perspec-
tive of historical stock/bill returns and concluded:

In general, a constant-mix (rebalanced) approach will underper-
form a comparable buy-and-hold (unrebalanced) strategy when
there are no reversals. This will be the case in strong bull or bear
markets, when reversals are small and relatively infrequent, be-
cause more of the marginal purchase and sell decisions will turn
out to have been poorly timed.
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We feel that this can only be part of the answer, and that another impor-
tant criterion is whether or not the individual assets have similar long term
return. Common experience demonstrates that rebalancing often yields sig-
nificant excess returns when the return differences are small. Contrariwise,
rebalancing penalizes the investor when asset return differences are large.

In this paper, we investigate the questions of rebalancing and long term port-
folio return in a quantitative manner. We begin by discussing Mean-Variance
Optimization (Markowitz (1952, 1991)) in the context of multi-period port-
folio optimization. We then derive two families of approximate Portfolio
Return Formulae, the first of which uses the individual arithmetic means as
input, and the second the geometric means. As a special case of the lat-
ter, we obtain a simple approximate formula for the Diversification Bonus,
the amount by which the geometric mean return of a rebalanced portfolio
exceeds the weighted sum of the individual geometric means. This result
is used to obtain a corresponding formula for the Rebalancing Bonus, the
amount by which the return of the rebalanced portfolio exceeds that of the
corresponding unrebalanced one. Lastly, we show how Mean-Variance Opti-
mization may be modified to obtain the Geometric Mean Frontier (GMF),
the analog of the efficient frontier when the geometric mean is used as the
measure of portfolio return.

Maximization of the geometric mean return has been discussed extensively in
the literature: Latane (1959), Hakansson (1971), Elton and Gruber (1974a,
1974b), Fernholz and Shay (1982). However most of this work was concerned
with exact results, the question of whether maximizing the geometric mean
can be justified on the basis of utility theory, or with the case of continuous
time rebalancing. We take a more pragmatic and general approach: (a)
we will be satisfied with approximate formulae for the portfolio geometric
mean, (b) we consider the geometric mean in the context of actual historical
data with a finite, but arbitrary, rebalancing interval, and (c) we focus on
the entire Geometric Mean Frontier, as opposed to just the single portfolio
which maximizes the geometric mean.
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2 MVO – Past and Future

Mean-Variance Optimization (MVO) is designed to produce return/variance
efficient portfolios. The standard Markowitz (1952, 1991) analysis is appli-
cable to a single period, and the inputs are the expected returns Ri and
covariance matrix Vij for the individual assets over this period. The latter
are related to the standard deviations si and correlation matrix ρij by

Vij = sisjρij , (1)

where ρij = 1 for i = j.

For a portfolio with fraction Xi assigned to asset i, with
∑

i Xi = 1, the
expected return R and its variance V are given by

R =
∑

i

XiRi , (2)

and
V =

∑
ij

XiXjVij . (3)

The risk of the portfolio is taken to be the standard deviation s =
√

V .

One way to supply the inputs Ri and Vij is to use historical returns, and
to assume that the upcoming period will resemble one of the previous N
periods, each with equal probability 1/N . In this case, the expected return
Ri becomes the arithmetic mean return of asset i over the N periods

Ri =
1

N

N∑
k=1

r
(k)
i , (4)

where r
(k)
i is the return of asset i in period k. For the portfolio, the return

R in Eq.(2) becomes the arithmetic mean of the returns of a portfolio which
is rebalanced to the mix specified by the Xi at the beginning of each period

R =
1

N

N∑
k=1

r(k) , (5)

where r(k) =
∑

i Xir
(k)
i is the return of the rebalanced portfolio in period

k. Note that while the period represented by the returns, e.g. annual or
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quarterly, is arbitrary, the rebalancing interval must always be the same as
the measurement interval.

When viewed in this multi-period context, the Markowitz analysis is unsat-
isfactory because the long term return of an asset with returns r(k) in the
different periods is given not by the arithmetic mean, Eq.(5), but rather by
the geometric mean

G =

[
N∏

k=1

(1 + r(k))

]1/N

− 1 . (6)

Since the arithmetic mean of any return series is always greater than the
geometric mean, the return predicted by the Markowitz analysis is always
greater than the true long term return that would have been obtained by
using the actual rebalanced allocation. For this reason the geometric mean
returns of the individual assets Gi given as

Gi =

[
N∏

k=1

(1 + r
(k)
i )

]1/N

− 1 (7)

are often used as inputs to the Markowitz analysis in preference to the arith-
metic means Ri. However, as pointed out by MacBeth (1995), this is not
correct either. As we shall see explicitly in the next section, this prescription
always underestimates the true return of the rebalanced portfolio.

The discussion of the remainder of this paper will mostly be in terms of his-
torical data, and the questions we will address are whether, given only partial
information, it is possible to (a) estimate the true long term geometric mean
return of a given rebalanced portfolio, (b) compare this return with that of
the corresponding unrebalanced portfolio, and (c) estimate the composition
of the rebalanced portfolio which maximizes the geometric mean return for
a given level of risk. The partial information we consider is the MVO data
alone, which for the case of historical data we will generalize to mean either
the arithmetic mean return Ri or geometric mean return Gi for each asset,
together with the covariance matrix Vij . As in the classical situation, we
identify the risk with the standard deviation, which for the case of histori-
cal data is a consequence of the fluctuation of the individual single period
returns about their (arithmetic) mean value. The general conclusion is that,
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to a good approximation, all three goals above may be accomplished, and
the reason we use the historical perspective is that it enables us to validate
these conclusions. However, the purpose of portfolio theory is, of course, to
provide a basis for decision-making for the future. In the case of the standard
single period analysis, the input data are necessarily statistical in nature, and
the covariance matrix represents the uncertainty in the returns for the single
upcoming period. However, for multi-period forcasting, two entirely different
viewpoints are possible.

In the first viewpoint, the investor seeks the best course of action over a
chosen number of upcoming periods, based on the assumption that the hy-
pothesized MVO data are actually realized. In this case the problem is con-
ceptually no different from that with partial historical data. This viewpoint
has no meaning in the case of the usual single period analysis, because if the
return of each asset is assumed known, then the covariance matrix is zero,
and the optimum strategy is just to select the asset with the highest return.
However, in the multi-period case, the problem is not so simple. Suppose, as
will usually be the case, that the input returns are chosen to be the geomet-
ric mean returns Gi. Firstly, the input covariance matrix represents not the
uncertainty in these values, but rather the fluctuations of, and correlations
between, the unspecified individual period returns which go to make up these
values. Thus there is no contradiction between having both specified values
for the returns and a non-zero correlation matrix. Secondly, the computa-
tional problem itself is non-trivial. Generally, as we shall see explicitly in
Section 6, the rebalanced strategy with the highest geometric mean return
is not to invest 100 percent in the asset with the highest geometric mean
return; often the highest return strategy is to invest in a diversified portfolio
containing several of the assets.

The second viewpoint is statistical in nature, and superficially more similar
to the conventional single period one. It is, however, necessary to make some
additional hypothesis about the time correlation of the returns. The most
natural approach, which is in accord with the simplest form of the random
walk theory of asset price movement, is to asssume that the distribution of
returns is stationary, i.e. the same in each period, with each period being
independent of the others. In this case the input return and covariance matrix
represent the expected value and uncertainty of this unique single period
distribution. The only new feature is that in the multi-period application we
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allow the possibilty of specifying the geometric means Gi of this distribution
instead of the arithmetic means Ri. In this viewpoint, the significance of the
geometric mean G (both for the individual assets, and for any rebalanced
portfolio of them) is that, as the number of periods becomes large, it becomes
increasingly probable that the actual long term return will lie close to G. This
property is quite general, and is analogous to the observation that if a fair
coin is thrown a large number of times, then it becomes increasingly likely
that the fraction of heads will lie close to one half.

Which of these two viewpoints to adopt is perhaps a matter of personal
taste. The actual mathematical development is the same in either case. We
tend to prefer the first viewpoint, because it does not have to make any
independent assumption about the time correlation of events. For example,
if the proposed rebalancing period is annual, then the covariance matrix
should correspond to annual returns; if it is quarterly, then the covariance
matrix should correspond to quarterly returns. There is no need for any
relationship to exist between these two covariance matrices. In the second
viewpoint, however, consistency requires that the two covariance matrices be
related by a factor of four, a relationship which is not necessarily satisfied in
reality. For the purposes of this paper, it will certainly be simpler to think
in terms of the first viewpoint, because there the future is treated in exactly
the same way as the past.

3 Portfolio Return Formulae

In this section we derive and discuss a variety of approximate formulae for the
geometric mean return of a balanced portfolio. These formulae express the
portfolio geometric mean in terms of the arithmetic or geometric mean of the
individual assets, together with their covariance matrix. In order to validate
these formulae we will use an actual 9-asset global data set of annual index
returns over the years 1970-1996. The arithmetic mean return, geometric
mean return, and standard deviation of each asset are listed in Table 2; the
correlation matrix was also computed but is not shown. Note that the asset
with the highest arithmetic mean return (gold) is not the one which has the
highest geometric mean return. In fact, both Japan and U.S. small stocks
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have higher long term return than gold over this period. Note also that, since
these are annual returns, the rebalancing period we consider in the examples
is also annual.

We first consider the weighted arithmetic mean and weighted geometric mean
as possible portfolio return formulae. The results for the arithmetic mean
are shown graphically in the top left plot of Fig. 1. As expected, we see
that the weighted arithmetic mean overestimates the actual portfolio return
in all cases. The corresponding results for the weighted geometric mean
are shown in in the top right plot of Fig. 1, where we see that, in contrast,
the geometric mean of the portfolio is always underestimated. Neither the
weighted arithmetic mean or weighted geometric mean are adequate models
for the portfolio geometric mean.

Improved geometric mean formulae may be based on the well known approx-
imate relationship between the geometric mean G and arithmetic mean R of
any set of returns

G ≈ R − V

2(1 + R)
, (8)

where V is the variance of the returns (see, for example, Markowitz (1991)).
This formula strictly holds in the limit where the variance is small, but it is
surprisingly accurate even outside this range. If, in addition, the arithmetic
mean return is small compared to unity then this reduces to

G ≈ R − V

2
. (9)

It will be useful in the following to regard both these formulae as special
cases of

G ≈ R − αV

2(1 + βR)
, (10)

which we will refer to as the (α, β) formula. In this paper we will only consider
the cases (1, 0) and (1, 1), but the general (α, β) case is no more difficult to
analyze than (1, 1), so most of the results will apply to this general case.

A useful feature of the (α, β) formula is that it may be inverted to give

R =
2G + αV

1 − βG +
√

(1 + βG)2 + 2αβV
. (11)
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When β = 0 this simplifies to

R = G +
αV

2
. (12)

We first explore the strategy of simply applying the (α, β) formula to the
portfolio. We will call this method A(α, β), where the ‘A’ signifies that
the Arithmetic means Ri of the individual assets are used to construct the
arithmetic mean R =

∑
i XiRi of the portfolio. The portfolio variance is

obtained from
V =

∑
ij

XiXjVij . (13)

The results for methods A(1,0) and A(1,1) are shown in the left column of
Fig. 1. It is seen that in both cases there is an improvement over the simple
weighted arithmetic or geometric means. The A(1,1) formula in particular
does extremely well for the two-asset and randomly selected portfolios, and
only fails for the high return single asset portfolios. Even here, however,
the results for both A(1,0) and A(1,1) are much better than those obtained
using simple weighted arithmetic or geometric means. Note that the weighted
arithmetic mean may be considered as the A(0,0) case of A(α, β), so that
the three plots on the left side of Fig. 1 may be viewed as three cases of the
same formula, with the accuracy impoving from top to bottom.

Two drawbacks of the A(α, β) method are (a) the formula uses the arithmetic
means of the individual assets rather than their geometric means, and (b)
the formula does not give the correct result in the simplest case where the
portfolio consists of only a single asset. Both these defects may be remedied
by applying the (α, β) formula not only to the portfolio but also to the
individual assets. To do this we first use the inverse relationship on the
individual assets to obtain “pseudo-arithmetic means”

R∗
i =

2Gi + αVii

1 − βGi +
√

(1 + βGi)2 + 2αβVii

, (14)

and then compute the portfolio arithmetic mean using R =
∑

i XiR
∗
i before

using the (α, β) formula for the portfolio. We call this method G(α, β), where
the ‘G’ signifies that the geometric means of the individual assets are used as
inputs. The results for G(1,0) and G(1,1) are shown in the right column of
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Fig. 1. It is seen that while the results for the two-asset and random portfolios
are not as good as for the corresponding A(1,0) and A(1,1) cases, the results
for the single asset portfolios are now exact. The weighted geometric mean
may be considered as the G(0,0) case of G(α, β), so that the three plots on
the right side of Fig. 1 may be viewed as three cases of the same formula,
with the accuracy improving from top to bottom.

In this section we have derived two families A(α, β) and G(α, β) of portfolio
return formulae, the first of which requires the individual arithmetic means
as inputs and the second their geometric means. While we have focused on
the two cases (1,1) and (1,0), which have some theoretical foundation, it is
possible that, empirically, values other than these might prove to be more
accurate.

4 The Diversification Bonus

The general G(α, β) method succeeds in expressing the geometric mean re-
turn of the portfolio in terms of the geometric mean returns of the individual
assets. Though simple to evaluate numerically, the expession is rather cum-
bersome and not very intuitive. However, when β = 0 the expression simpli-
fies because the inverse relation in Eq.(11) reduces to the simpler Eq.(12).
In the following, we will also set α = 1, though the case of general α is no
more difficult. In this case, G(1, 0), we find

G ≈ ∑
i

XiGi +
1

2


∑

i

XiVii −
∑
i,j

XiXjVij


 . (15)

The analogous result in the limit of continuous time rebalancing has been
obtained previously by Fernholz and Shay (1982), who showed that it is exact
when the prices follow geometric Brownian motion. A different form of the
same result may be obtained by using

∑
i Xi = 1 in the first term inside the

parentheses and symmetrizing to give

G ≈ ∑
i

XiGi +
∑
i<j

XiXj

(
Vii

2
+

Vjj

2
− Vij

)
, (16)

where the sum is over all pairs i and j with i < j.
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This form of the G(1, 0) formula has been obtained previously using an em-

pirical argument1. The interesting feature of this formula, not shared by
the general G(α, β) with β 6= 0, is that it separates into two terms, the first
of which depends only on the geometric mean returns, and the second only
on the covariance matrix. Eq.(16) demonstrates that, for given values of
the individual returns Gi, it is possible for the portfolio return G to be an
increasing function of the volatility (standard deviation) of the individual
assets. In particular, if all the off-diagonal elements of the correlation matrix
ρij are zero or negative, then the portfoloio return is an increasing function
of each of the standard deviations si. The benefits of a rebalancing strategy
become much greater for assets which are volatile and poorly correlated.

Let us write Eq.(16) in the form

G − ∑
i

XiGi ≈
∑
i<j

XiXj

(
Vii

2
+

Vjj

2
− Vij

)
. (17)

We will refer to the left side of Eq.(17), which is always positive, as the

Diversification Bonus2, because it represents the effective return in excess
of that calculated from the simple combination of the individual geometric
mean returns. The right hand side of Eq.(17) provides an approximation to
this quantity which is expressed solely in terms of the covariance matrix of
the assets. On the left side of Fig. 2 we compare the approximate formula,
Eq.(17), with the true value of G − ∑

i XiGi. It is seen that some of the
portfolios have a Diversification Bonus in excess of 200 basis points. Although
Eq.(17) tends to overestimate the precise value of G−∑

i XiGi, as we would
expect from the plot for formula G(1,0) in Fig. 1, it does a good job of
predicting which portfolios will have significant Diversification Bonus. On
the right side of Fig. 2 we show the corresponding plot for the case G(1,1);
while this formula does not lead to a simple form like Eq.(17), it gives a
better approximation to the true Diversification Bonus, as again we would
expect from Fig. 1.
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5 The Rebalancing Bonus

The weighted geometric mean
∑

i XiGi provides a naive estimate of effec-
tive portfolio return, but it does not correspond to the return obtainable by
any particular investment strategy. A more meaningful comparison is that
between the return G of the rebalanced portfolio and the return G′ of the
corresponding unrebalanced portfolio. The latter is given by

G′ =

[∑
i

Xi(1 + Gi)
N

]1/N

− 1 . (18)

Subtracting Eq.(18) from Eq.(16) we obtain

G − G′ ≈
[∑

i

Xi(1 + Gi)

]
−

[∑
i

Xi(1 + Gi)
N

]1/N

+
∑
i<j

XiXj

(
Vii

2
+

Vjj

2
− Vij

)
. (19)

We will refer to the left side of Eq.(19) as the Rebalancing Bonus3, because
it represents the difference between the returns of the rebalanced and un-
rebalanvced portfolios. In the approximation on the right hand side, the
term on the first line always gives a negative contribution, thus favoring the
unrebalanced portfolio. This term is large when the differences between the
long term returns Gi are large, and vanishes when all the returns Gi are the
same. The term in the second line always gives a positive contribution, thus
favoring the rebalanced portfolio. This term is large when the individual
assets have large variances, and low or negative correlation.

For the data set considered in Section 3, it is found that the majority of
portfolios perform better when rebalanced. This is illustrated in the left side
of Fig. 3, in which we compare Eq.(19) with the true value of G − G′. It
is seen that the great majority of the portfolios have positive values for this
quantity. Examination of the data underlying Fig. 3 shows that the only
portfolios giving a significant negative value are 50/50 2-asset portfolios in
which one of the assets is Treasury Bills. This is in accordance with the above
discussion – only in this case is the return difference sufficient to overcome the
second term in Eq.(19). We also see that the approximate formula in Eq.(19)
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always gives the correct sign for G−G′, although it tends to overestimate the
precise benefit of rebalancing, as we would expect from the plot for formula
G(1,0) in Fig. 1. On the right side of Fig. 3 we show the corresponding
plot for the case G(1,1); while this formula does not lead to the simplifying
separation of Eq.(19), it gives a better model value for G − G′, as again we
would expect from Fig. 1.

The first line in Eq.(19) vanishes when all the returns Gi are equal, but there
is no simple way to express Eq.(19) in terms of return differences alone. Over
a long enough time period, however, the unrebalanced portfolio becomes
dominated by the highest return asset, independent of the initial allocation,
and we obtain

G′ ≈ Gmax , (20)

where Gmax = maxi Gi is the maximum return obtainable from any unrebal-
anced portfolio. In this case the Rebalancing Bonus becomes

G − G′ ≈ ∑
i

Xi(Gi − Gmax) +
∑
i<j

XiXj

(
Vii

2
+

Vjj

2
− Vij

)
. (21)

In this case it is clear that if all the Gi are the same, then the rebalanced
portfolio is always superior to the unrebalanced one.

6 The Geometric Mean Frontier

When used with historical data, the traditional Markowitz efficient frontier
designates those portfolios with greater (arithmetic mean) return than any
other with the same or lesser risk, and lesser risk than any other with the
same or greater return. The Markowitz return R and risk s are defined by

R =
∑

i

XiRi , (22)

and
s2 =

∑
ij

XiXjVij . (23)

In this section we show that it is possible to modify the MVO analysis to
construct the analogous efficient frontier when the geometric mean is used
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instead of Eq.(22) as the measure of return, while keeping Eq.(23) as the
measure of risk. More precisely, we show that this Geometric Mean Frontier
(GMF) may be computed exactly when any of the approximate geometric
mean formulae A(α, β) or G(α, β) of Section 3 is used, and that in each
case the efficient frontier so obtained provides a good approximation to the
efficient frontier of the true geometic mean, the latter being obtained using
the optimization feature of a standard spreadsheet package4.

In each of the methods A(α, β) or G(α, β), the portfolio geometric mean has
the form

G = R − αs2

2(1 + βR)
, (24)

where R and s are given in terms of the individual assets by expressions of
the form of Eqs. (22) and (23). The only difference between the cases is that
for A(α, β) the individual returns Ri are the true arithmetic mean returns,
while for G(α, β) the Ri are pseudo-arithmetic means R∗

i given in Eq.(14).
To simplify the notation we will omit the superscript in this latter case. Also,
in this section we will use the symbol ‘G’ to denote the appropriate model
geometric mean, so that Eq.(24) should be thought of as a definition, rather
than as an approximate relation for the true geometric mean.

The key to the analysis is to consider an auxiliary classical Markowitz op-
timization which uses the arithmetic means as inputs. We emphasize that
even in the case of G(α, β), which expresses the portfolio geometric mean
in terms of the individual geometric means, the inputs to this auxiliary
Markowitz problem are the individual pseudo-arithmetic means, not the ge-
ometric means.

We begin by generalizing an argument first given by Elton and Gruber (1974b)
to show that any portfolio which is (G, s) efficient must also be Markowitz
(R, s) efficient. For any (α, β), the geometric mean expression in Eq.(24) has
the properties

∂G

∂R
> 0 , (25)

∂G

∂s
< 0 . (26)

Suppose that (R1, s1), with corresponding geometric mean G1, is not Marko-
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witz efficient. Then there exists a portfolio (R2, s2), with corresponding
geometric mean G2, with either R2 > R1 and s2 ≤ s1, or R2 ≥ R1 and
s2 < s1, or both. In either case it follows from Eqs. (25) and (26) that
G2 > G1 and s2 ≤ s1. Thus no portfolio which is not Markowitz efficient
can be geometric mean efficient; equivalently, every geometric mean efficient
portfolio must be Markowitz efficient. Note that the above argument does
not assume the existence of a continuous path of portfolios between portfolios
1 and 2.

The Markowitz efficient frontier extends between the minimum variance port-
folio at s = smin and the maximum return portfolio at s = smax. For each s
in the range smin ≤ s ≤ smax the frontier gives a corresponding return Rf (s),
and this function Rf(s) has the properties

dRf

ds
> 0 , (27)

d2Rf

ds2
< 0 . (28)

Let us define Gf(s) by evaluating Eq.(24) on the Markowitz frontier, i.e.

Gf(s) = Rf (s) − αs2

2(1 + βRf(s))
. (29)

From the above discussion, the (G, s) efficient frontier must be a sub-graph
of the graph of Gf(s). Thus the multi-dimensional space of candidate (G, s)
efficient portfolios has been reduced to a one-dimensional one.

It can be shown using Eqs. (27) and (28) that, under very reasonable as-
sumptions on the nature of the function Rf (s), the function Gf(s) can have
only one maximum in the range smin ≤ s ≤ smax. In general there are three
possibilities: (a) the maximum occurs at smin; in this case the geometric
mean frontier consists of a single portfolio, the minimum variance portfolio,
(b) the maximum occurs at smax; in this case the entire Markowitz frontier
is geometric mean efficient, or (c) the maximum occurs at some intermediate
point; in this case only that part of the Markowitz frontier to the left of this
maximum is geometric mean efficient. This third possibility is the one which
occurs for our chosen example.
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The portfolio with the maximum geometric mean may be algorithmically
determined by starting from the minimum variance portfolio at s = smin and
moving to the right along the Markowitz frontier until the corresponding
G = Gf (s) first decreases. The standard MVO output consists of a set of
“corner portfolios” located on the Markowitz frontier, between each adjacent
pair of which the frontier is obtained by linear combination. The task of
testing for a maximum of Gf (s) between any pair of corner portfolios is
easily accomplished by using the composition, rather than the risk, as the
independent variable. Since Gf(s) has only one maximum, a maximum will
be found in at most one corner interval, and that interval will always be one
which is adjacent to the corner portfolio with the highest geometric mean
return.

We examine the validity of these ideas using the same 9-asset data set con-
sidered in Section 3. In Fig. 4 we plot the Markowitz efficient frontier, and
associated model and actual geometric means, for the four cases A(1,0),
G(1,0), A(1,1) and G(1,1). The result of the exact spreadsheet optimization
of the true geometric mean is also shown. The four cases are qualitatively
very similar. In each, the maximum of the geometric mean (model or actual)
occurs at an intermediate value of risk; the Markowitz frontier greatly over-
estimates the true reward of increasing risk. Note also that, while the model
returns in the four cases show some differences, as we would expect from the
discussion of Section 3, the true geometric mean evaluated on the frontier is
for each case in excellent agreement with the result of the full optimization
of the true geometric mean.

In Table 3 we present in tabular form three portfolios on the efficient fron-
tier for each of the the four methods A(1,0), G(1,0), A(1,1) and G(1,1),
together with the exact numerical result. Table 3a shows the portfolio which
maximizes the model geometric mean. We see that the composition of the
optimum portfolio is in all four model cases in reasonable agreement with
the exact one, and that despite the fact that the corresponding model ge-
ometric means are somewhat different from each other, the true geometric
means are close not only to each other, but also to the correct maximum
of 16.85 percent. An even better result may be obtained by choosing the
optimal portfolio to be that which maximizes (over the Markowitz frontier)
the true geometric mean return, rather than the model geometric mean. The
corresponding results are shown in Table 3b. In this case it is seen that
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the portfolio compositions are in closer agreement with the exact ones, and
that, to the quoted precision, all four approximate methods obtain the cor-
rect maximum geometric mean of 16.85 percent. It is also possible to use
the efficient frontier of the auxiliary Markowitz problem to determine the
geometric mean efficient portfolio corresponding to a given value of risk s, or
model geometric mean G, or true geometric mean. As an example, we show
in Table 3c the results obtained by fixing s to be 10.0 percent. Again, we see
that the portfolio compositions are in good agreement with the exact ones,
and that the values for the true geometric mean reproduce the exact value
of 13.54 percent to within at most one basis point.

The extremely close agreement when the true geometric mean return is used
follows from a general result of perturbation theory, namely that when the
objective function of an optimization is perturbed by a small amount, the
change in the value of the unperturbed objective function in going to the new
maximum is second order in the perturbation. The excellent agreement is
thus due to the fact that all the A(α, β) and G(α, β) formulae are reasonable
approximations to the true geometric mean.

The net result of this section is that, although the A(α, β) and G(α, β) for-
mulae are not perfect models for the true geometric mean, in each case the
efficient frontier of the auxiliary Markowitz problem does contain portfolios
whose true geometric mean return is extremely close to the real maximum,
either in an absolute sense, or when the risk is specified to take a given value.
Thus, finding the optimal geometric mean portfolio becomes a tractable nu-
merical task, even for a large number of assets, because the space of candidate
portfolios becomes one-dimensional.

7 Discussion

This paper contains four significant results, each of which can be easily used
by investors who are able to express their data in the form commonly used
by a standard Mean-Variance Optimization package – namely the arithmetic
mean return Ri or geometric mean return Gi of each asset, and the covariance
matrix Vij between the assets. These results are:
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1. Two families A(α, β) and G(α, β) of approximate Portfolio Return For-
mulae for estimating the geometric mean return of a rebalanced portfo-
lio. The family A(α, β) requires the arithmetic means of the individual
assets, and G(α, β) the geometric means.

2. For the case G(1,0), a particularly simple approximate formula, Eq.(17),
for the Diversification Bonus, the amount by which the portfolio ge-
ometric mean exceeds the weighted sum of the individual geometric
means.

3. A corresponding approximate formula, Eq.(19), for the Rebalancing
Bonus, the difference between the returns of the rebalanced and unre-
balanced portfolios.

4. An extension of classical Mean-Variance Optimization which allows
construction of a good approximation to the entire Geometric Mean
Frontier (GMF), and in particular that portfolio which maximizes the
geometric mean return.

The validity of these results was demonstrated using historical data. The
chosen data set, containing as it does some extremely volatile assets, is a
stringent test of the theory; much more accurate results would be obtained
by applying the methodology to a less volatile group of assets, such as dif-
ferent classes of U.S. stocks and bonds. However we believe that the major
application of these ideas is precisely in generating diversified portfolios of
very volatile assets, because there lies the greatest potential benefit of di-
versification and rebalancing, and of optimizing specifically for long term
return.

The formalism presented here is not limited to annual returns, but may be
applied for any rebalancing period. For example, if the rebalancing period is
quarterly, then the arithmetic and geometric mean returns should be quar-
terly returns, and the covariance matrix should be constructed from the his-
torical quarterly returns. If desired, the resulting portfolio return G may be
converted to annual return at the end of the calculation. The methodology
may thus be used to investigate the effect of varying the rebalancing period.

While our focus has been on the analysis of historical data, the goal of port-
folio theory is of course to generate optimal strategies for the future. In
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the historical case, the simplest and most accurate of the MVO methods pre-
sented here is to use the arithmetic means as inputs to the optimizer, and use
the A(1,1) formula or, even better, the actual returns, to evaluate the portfo-
lio geometric mean along the frontier. This will always generate an excellent
approximation to the true Geometric Mean Frontier. There is no need to
consider the G(α, β) formulae and pseudo-arithmetic means. However, when
considering long term future strategies the situation is very different (for the
interpretation of the formalism in this situation, recall the discussion at the
end of Section 2). Here it is unlikely that investors will simply adopt the his-
torical geometric mean, arithmetic mean and covariance matrix. At the least,
they will provide their own estimate of return, and this return will be the ef-
fective long term, i.e. geometric mean, return. In this case the G(α, β) family
of Portfolio Return Formulae, and the associated use of pseudo-arithmetic
means as MVO inputs, become indispensible. The G(1,1) formula will give
the best results when used in the MVO analysis, while the simpler G(1,0)
formula can provide good intuitive understanding of the performance of dif-
ferent portfolio allocations. We emphasize once again that simply using the
individual geometric means as MVO inputs always underestimates the true
long term return, even when the input data for the individual assets prove
to be correct.

Notes

1. Bernstein, William J., “The Rebalancing Bonus: Theory and Practice”,
Efficient Frontier (September 1996), http://www.coos.or.us/˜wbern/ef.

2. Previously (see Note 1) the left side of Eq.(17) was termed the Rebal-
ancing Bonus; here we use this expression for the left side of Eq.(19).

3. See Note 2.

4. Quattro Pro, Version 6.0.
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Arithmetic Geometric Standard
mean mean deviation

STOCKS 0.1216 0.1019 0.2020
BONDS 0.0583 0.0551 0.0850

Table 1: Arithmetic mean, geometric mean and standard deviation for
U.S. Common Stocks and Long Term Corporate Bonds for 1926-94.
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Arithmetic Geometric Standard
mean mean deviation

S&P 500 0.1346 0.1227 0.1585
SMALL US (9-10) 0.1659 0.1415 0.2293
EAFE-E 0.1486 0.1305 0.2095
EAFE-PXJ 0.1641 0.1226 0.3084
JAPAN 0.1895 0.1454 0.3368
GOLD 0.2014 0.1370 0.4299
20 Y TREAS 0.0989 0.0927 0.1189
5 Y TREAS 0.0950 0.0928 0.0686
T BILL 0.0692 0.0688 0.0267

Table 2: Annual arithmetic mean return, geometric mean return, and stan-
dard deviation for nine asset classes over the period 1970-1996. S&P 500,
U.S. 9-10, and Treasury security retrurns from SBBI, Ibbotson and Asso-
ciates. MSCI-EAFE-E, MSCI-EAFE-PXJ and MSCI Japan from Morgan
Stanley. Gold from Morningstar Inc, and Van Eck Group.
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A(1,0) G(1,0) A(1,1) G(1,1) Exact
SMALL US (9-10) 0.3530 0.2190 0.3049 0.2204 0.2767
JAPAN 0.3385 0.3778 0.3633 0.3866 0.3533
GOLD 0.3085 0.4032 0.3318 0.3931 0.3699
Markowitz return 0.1848 0.2056 0.1863 0.1946 0.1874
Standard deviation 0.1969 0.2242 0.2047 0.2228 0.2120
Model geometric mean 0.1655 0.1805 0.1686 0.1738 0.1685
True geometric mean 0.1681 0.1683 0.1684 0.1684 0.1685

(a) Maximum model geometric mean

A(1,0) G(1,0) A(1,1) G(1,1) Exact
SMALL US (9-10) 0.2649 0.2769 0.2649 0.2732 0.2767
JAPAN 0.3839 0.3526 0.3839 0.3623 0.3533
GOLD 0.3512 0.3705 0.3512 0.3646 0.3699
Markowitz return 0.1874 0.2027 0.1874 0.1925 0.1874
Standard deviation 0.2120 0.2120 0.2120 0.2119 0.2120
Model geometric mean 0.1650 0.1803 0.1685 0.1736 0.1685
True geometric mean 0.1685 0.1685 0.1685 0.1685 0.1685

(b) Maximum true geometric mean

A(1,0) G(1,0) A(1,1) G(1,1) Exact
SMALL US (9-10) 0.2407 0.2218 0.2407 0.2270 0.2396
EAFE-E 0.0172 0.0096 0.0172 0.0186 0.0166
JAPAN 0.1402 0.1445 0.1402 0.1414 0.1400
GOLD 0.1290 0.1403 0.1290 0.1359 0.1303
5 Y TREAS 0.4729 0.4839 0.4729 0.4772 0.4736
Markowitz return 0.1399 0.1461 0.1399 0.1416 0.1399
Standard deviation 0.1000 0.1000 0.1000 0.1000 0.1000
Model geometric mean 0.1349 0.1411 0.1355 0.1372 0.1354
True geometric mean 0.1354 0.1353 0.1354 0.1354 0.1354

(c) Portfolio with standard deviation s = 0.10

Table 3: Three portfolios on the Markowitz frontier for each of the four
cases A(1,0), G(1,0), A(1,1) and G(1,1). The final column shows the cor-
responding exact result.
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Figure 1: Cross-plot of model (vertical axis) against actual (horizontal
axis) geometric mean return, for weighted arithmetic mean (A), weighted
geometric mean (G), and formulae A(1,0), G(1,0), A(1,1) and G(1,1). Each
plot shows the 9 single-asset portfolios (squares), the 36 two-asset portfolios
with 50-50 mix, and 25 randomly generated portfolios.
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Figure 2: Cross-plot of model (vertical axis) against actual (horizontal
axis) Diversification Bonus, G−∑

i XiGi, using formulae G(1,0) and G(1,1)
for the model return. Each plot shows the 36 two-asset portfolios with 50-
50 mix (squares), and 25 randomly generated portfolios (diamonds).
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Figure 3: Cross-plot of model (vertical axis) against actual (horizontal
axis) Rebalancing Bonus, G−G′, using formulae G(1,0) and G(1,1) for the
model rebalanced return. Each plot shows the 36 two-asset portfolios with
50-50 mix (squares), and 25 randomly generated portfolios (diamonds).
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Figure 4: Risk-return plot for each of the four cases A(1,0), G(1,0), A(1,1)
and G(1,1). In each plot the upper solid curve is the Markowitz efficient
frontier, the lower solid curve the corresponding value of the model ge-
ometric mean, and the dotted curve the corresponding value of the true
geometric mean. The open diamonds denote the exact optimized return
for each value of risk.
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